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Abstract

For many centuries, philosophers and scientists have pondered the origins and nature of human

intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothe-

sizing that a system of Euclidean concepts either is innate or is assembled by general learning pro-

cesses. Recent research from cognitive and developmental psychology, cognitive anthropology,

animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may

be founded on at least two distinct, evolutionarily ancient, core cognitive systems for representing

the shapes of large-scale, navigable surface layouts and of small-scale, movable forms and objects.

Each of these systems applies to some but not all perceptible arrays and captures some but not all of

the three fundamental Euclidean relationships of distance (or length), angle, and direction (or sense).

Like natural number (Carey, 2009), Euclidean geometry may be constructed through the productive

combination of representations from these core systems, through the use of uniquely human symbolic

systems.

Keywords: Spatial cognition; Cognitive development; Conceptual change; Form perception;

Navigation

1. Introduction

Of all our abstract conceptual systems, two of the simplest are the positive integers—the

set of concepts composing the system of natural number—and the points, lines, and

figures of the Euclidean plane—the set of concepts composing the system of natural
geometry (Descartes, 1637/2001). Despite their simplicity, however, natural number

concepts do not appear to come so naturally to humans. Carey (2009), whom this study

honors, argues that the positive integers are constructed from a set of core cognitive systems
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that are considerably less general or powerful: a system for representing exactly 1, 2, or 3

numerically distinct individuals, on one hand, and a system for representing and operating

on approximate cardinal values, on the other. Moreover, the construction of integers

depends in part on culturally variable counting devices. Natural number may be therefore

partly a product of human culture, built on a foundation of core systems that emerge in

infancy, guide the reasoning of adults in all cultures, and are shared with other animals.

What about natural geometry? For 2,500 years, the system of geometry that has appeared

most natural to human adults is Euclidean plane geometry: a formal system for character-

izing two-dimensional (2D) shapes in accord with the distance, angle, and directional
relationships among their parts. In Euclidean geometry, all forms that differ from one

another have parts that contrast on one or more of these properties; conversely, two forms

whose points and lines are characterized by the same distance, angle, and directional

relationships are congruent (see Fig. 1). The geometrical equivalence of two forms with the

same length, angle, and sense relations is so immediately apparent to the human mind that

philosophers and mathematicians believed for millennia that Euclidean geometry consti-

tuted the only logically possible geometric system (Hatfield, 1990; Kline, 1972). Although

this view was overturned more than two centuries ago, Euclidean geometry continues to be

the first system of formal geometry that students learn, and the system whose principles

accord best with human intuition.

What are the sources of Euclidean geometrical intuitions? Philosophers from Plato (ca.

380 B.C 1949) to Descartes (1637/2001) to Kant (1781[2003]) have argued that Euclidean

geometry comes naturally to the human mind, even to the minds of humans who lack all

instruction in mathematics or experience in a locally Euclidean world, for how could a

creature who lacked this system of spatial concepts ever gain the kinds of spatial experi-

ences that would support it (see Hatfield, 1990 for discussion)? More recently, some evolu-

A) B) C)

Fig. 1. A geometrical theory can be fully characterized by the set of transformations that leave the properties of

figures invariant (Klein, 1893). In Euclidean plane geometry, two forms are identical if they can be made to

coincide through a rigid displacement (rotation and ⁄ or translation) on the plane. Forms that cannot be made to

coincide differ in one or more of the properties of (A) distance (the lengths of parts and distances between them),

(B) angle (the orientations at which parts meet), and (C) sense (the left–right directions of parts with respect to

one another).
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tionary biologists and psychologists have posited innate cognitive mechanisms for capturing

locally Euclidean geometric relationships, reasoning that navigating organisms cannot

afford to lose their way while learning those relationships by trial and error (Gallistel,

1990). And some computer scientists, working in robotics or computer vision, have built

Euclidean principles into the systems by which autonomously moving robots map the envi-

ronment (e.g., Gee, Chekhlov, Calway, & Mayol-Cuevas, 2008) or recognize objects (e.g.,

Marr, 1982; see also Biederman, 1987), as Euclidean geometry provides for economical

descriptions of surfaces and objects.

Countering these arguments are proposals that all of geometry is learned by processes

of association or of rapid, adaptive learning, applied to the spatially structured world

projected to our senses (Berkeley, 1709 ⁄ 1975; von Helmholtz, 1885 ⁄ 1962). Consistent

with these views, animals learn to use arbitrary landmarks as guides to environmental

locations (for review, see Cheng & Newcombe, 2005), children’s spatially guided behavior

shows a regular increase in precision with growth and experience (e.g., Spencer & Hund,

2003), and adults’ navigation is systematically altered by experience (e.g., Rieser, Hill, &

Taylor, 1992).

What, then, is the nature of human knowledge of geometry, and how does this knowledge

arise and develop? Here, we offer a hypothesis in the spirit of Carey (2009) that contrasts

with both families of proposals sketched earlier. Like natural number, natural geometry is

founded on at least two evolutionarily ancient, early developing, and cross-culturally univer-

sal cognitive systems that capture abstract information about the shape of the surrounding

world: two core systems of geometry. Nevertheless, each system is limited: It captures only

a subset of the properties encompassed by Euclidean geometry, and it applies only to a sub-

set of the perceptible entities to which human adults give shape descriptions. Children go

beyond these limits and construct a new system of geometric representation that is more

complete and general, by combining productively the representations delivered by these two

systems. This productive, combinatorial process, we suggest, depends in part on uniquely

human, culturally variable artifacts: pictures, models, and maps. Thus, like the system of

number, the system of geometry that feels most natural to educated adults is a hard-won

cognitive achievement, constructed by children as they engage with the symbol systems of

their culture.

2. Euclidean cognitive maps: Core geometry for action?

Before turning to this hypothesis, we briefly consider a different family of hypotheses

concerning the origins of human geometrical intuitions. It is possible that geometrical intu-

itions emerge not from systems for representing the shapes of the surrounding world but

from systems for representing the spatial structure of one’s own actions. Because all actions

involve motion through space, effective actions require that agents direct their eyes, hands,

and bodies to the right places. Once actions are coordinated appropriately, agents might

therefore be able to use the spatial information in their actions to deduce the spatial proper-

ties of the surrounding environment. Some action-based theories of spatial knowledge give

E. Spelke, S. A. Lee, V. Izard ⁄ Cognitive Science (2010) 3



a central role to learning and experience; they posit that animals and humans construct

Euclidean representations of the environment through active experimentation and the devel-

opment of motor skills (e.g., von Helmholtz, 1885 ⁄ 1962; Piaget, 1952; Spencer, Smith, &

Thelen, 2001). Other action-based theories propose that animals and humans are endowed

with an innate capacity to represent the Euclidean properties of their actions, and they use

this capacity to deduce the Euclidean properties of external objects and scenes (Descartes,

1637/2001; Gallistel, 1990; Landau, Gleitman, & Spelke, 1981; Tolman, 1948). On both

sets of views, natural geometry originates in an ability to use the spatial structure of one’s

own actions to form a ‘‘cognitive map’’ of the environment.

Tests of the cognitive map hypothesis date back to Tolman (1948), whose studies of

latent learning and shortcut behavior suggested that rats who move through an environment

record the locations of the places through which they travel in a geocentric, Euclidean coor-

dinate system. This hypothesis was bolstered by studies of triangle completion in navigating

animals from insects (Gould, 1986) to humans (Loomis, Klatzky, Golledge, & Philbeck,

1999). Cognitive maps were given a neural interpretation through seminal studies of the pat-

terns of activity of pyramidal neurons in the rat hippocampus, whose firing rates depended

on the rat’s position in the environment, regardless of whether that environment could be

seen (O’Keefe & Nadel, 1978).

Nevertheless, none of these studies conclusively showed that animals form Euclidean

maps of their navigable environment. Indeed, further studies of navigation provided evi-

dence that insects, rats, and even humans often fail to do so and instead find their way

by learning and reproducing a series of routes between significant locations (Cartwright

& Collett, 1982; Foo, Warren, Duchon, & Tarr, 2005; Restle, 1957; Wehner & Menzel,

1990). Particularly striking evidence against Euclidean maps has been obtained through

recent studies of human navigation in virtual reality (Foo et al., 2005; Foo, Warren,

Duchaine, & Tarr, 2007). In these studies, college students were allowed to move

through environments on paths whose distance and angular relationships either preserved

or violated the laws of Euclidean geometry. Strikingly, students navigated as effectively

in non-Euclidean as in Euclidean environments, and their navigation by purely Euclidean

relationships was highly inaccurate. Because these studies were performed on educated

human adults, their findings cast doubt on all theories that place actions at the center of

human Euclidean intuitions, whether nativist or empiricist in spirit. Even adults who have

spent a lifetime navigating in locally Euclidean space, and who have learned formal

Euclidean geometry, fail to organize their paths of locomotion into a Euclidean cognitive

map.

If the concepts of Euclidean geometry do not originate in our coordinated action, then

what are their sources? ‘‘Geo-metry’’ is the measurement of the Earth. Consistent with this

meaning, research across the spectrum of the cognitive sciences provides evidence for at

least two systems by which animals and humans measure their perceivable surroundings.

One system applies to the large-scale spatial layout and guides navigation. The other system

applies to small-scale forms and allows for recognition and categorization of objects by their

shapes. We consider these two systems in turn.
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3. Core geometry for navigation

Like other functions of evolutionary importance, navigation depends on multiple mecha-

nisms. Some of these mechanisms are not guided by Euclidean information, such as the

mechanisms at play in the action tasks described earlier (Wehner & Menzel, 1990). Some of

these mechanisms are species specific, such as the celestial navigation of migratory birds

(Emlen, 1970). Some mechanisms involve little or no analysis of geometry, such as the fol-

lowing of odor trails by ants (Carthy, 1951). One mechanism of navigation, however, is both

widespread across animals, including humans, and centrally focused on environmental

geometry. As humans and other animals navigate, they represent both distances and

directional relationships on the extended surfaces that bound the navigable layout (Doeller

& Burgess, 2008; Lever, Wills, Cacucci, Burgess, & O’Keefe, 2002). The existence and

properties of these representations are revealed when animals lose their orientation and must

draw on memory for the positions of these surfaces to reorient themselves (Cheng & Galli-

stel, 1984). The cognitive system that accomplishes this feat is the first of our two proposed

core systems of geometry, so we will describe it in some detail.

Cheng (1986) was the first to discover that rats recover their orientation by analyzing the

shape of their surroundings. When rats explored a rectangular room in which food was bur-

ied and then were disoriented by slow turning in the dark, they used the lengths and relative

directions of the room’s walls to reorient themselves and therefore searched for the food at

the two locations that were congruent with the room’s geometry (e.g., at a corner to the left
of a long wall; Fig. 2). Subsequent research revealed that the capacity to reorient by the

shape of the borders of the environment is found in animals as distant as humans (Hermer &

Spelke, 1994; Lourenco & Huttenlocher, 2006) and ants (Wystrach & Beugnon, 2009).1

Importantly, the ability develops in animals independently of experience in a geometrically

structured layout: Chicks and fish who were raised since hatching in a geometrically uninfor-

mative, circular environment reoriented by the shape of a rectangular environment the first

time they encountered it, and they did this as reliably as chicks or fish who were experienced

at navigating by geometry (Brown, Spetch, & Hurd, 2007; Chiandetti & Vallortigara, 2008).

In contrast, disoriented animals’ use of nongeometric properties such as surface brightness

or texture is highly influenced by experience, both in controlled-reared fish (Brown et al.,

2007) and in mice who are trained to use surface features to locate objects (Twyman,

Newcombe, & Gould, 2009). Finally, sensitivity to geometry is shown across a wide variety

of navigation tasks, in oriented as well as disoriented animals or humans tested by a diverse

set of behavioral and neurophysiological methods (see Cheng & Newcombe, 2005 for

review). It is encoded automatically, independently of processes for encoding other features

of the environment such as landmark objects (Doeller & Burgess, 2008), by a distinct neuro-

nal network that includes the hippocampus (Doeller, King, & Burgess, 2008) and surround-

ing cortical areas (Epstein, 2008; Solstad, Boccara, Kropff, Moser, & Moser, 2008).

Nevertheless, the system for encoding surface layout geometry fails as a system of

Euclidean geometry in two ways. First, Euclidean geometry can be applied to any percep-

tible objects, but the core geometric navigation system is more limited: Navigating animals

encode the shapes of the extended surfaces that form the borders of the traversable layout,
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but they fail to encode the shapes of surface markings or landmark objects. Cheng and

Gallistel’s (1984) rats, for example, reoriented by the shape of their chamber but not by the

shapes of the visual forms that decorated the corners of that chamber. In later studies,

4-year-old children reoriented themselves in accord with the shape of a rectangular room, a

rectangular array of walls with an open ceiling, and a rectangular array of borders that are

low enough to step over, but they failed to reorient by the shape of a rectangular array of 3D

objects, large columns, or black lines on the floor (Lee & Spelke, 2008; see also Gouteux &

Spelke, 2001; Fig. 2). Importantly, children’s failure to reorient by the shapes of arrays of

objects or visual forms does not stem from a failure to detect or attend to those objects and

forms: When an object was hidden at a corner of a 2D black rectangle, for example, children

searched directly and exclusively at the rectangle’s four corners, showing that they detected

the rectangle and were aware of its relevance for the search task. Nevertheless, children

failed to use the length and sense relations in the rectangle to limit their search to the two

geometrically congruent corners, as they do when they are presented with a geometrically

identical array of extended surfaces.

A) B)

C) D)

Fig. 2. Examples of rectangular arrays and environments. In (A), the arrow symbolizes the correct goal location

in the schematic diagram; the stars symbolize the two geometrically correct locations—the correct corner and its

diagonally opposite twin. In a rectangular arena with (B) tall walls (rats: Cheng, 1986; children: Hermer &

Spelke, 1994) or (C) short borders (children: Lee & Spelke, 2008), search is limited to the two geometrically cor-

rect corners. When the walls or borders are replaced by 2D rectangular lines (D: Lee & Spelke, 2008), children

search all four corners equally.
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Even more dramatic evidence for a dissociation between detecting and reorienting by 2D

geometry comes from experiments by Huttenlocher and Lourenco (2007). They investigated

toddlers’ reorientation in a square room whose alternating walls could be distinguished in

various ways. First, they showed that children failed to reorient by a color difference

between the opposite walls of the chamber: a conceptual replication of Cheng’s (1986) ori-

ginal findings. When opposite wall pairs were red and blue and an object was hidden at one

of the corners with the red wall on the left, disoriented children searched the four corners

equally, irrespective of their lateral relationships (see also Dessalegn & Landau, 2008;

Lourenco, Addy, & Huttenlocher, 2009), although children do reorient in a square room

when opposite walls differ in brightness (Nardini, Atkinson, & Burgess, 2008). Next,

Huttenlocher and Lourenco showed that children successfully reorient by differences in wall

texture size and density: When opposite walls were covered with large and sparse versus

small and dense circles, children confined their search to the two corners with the appropri-

ate textural and directional relationships (e.g., searching only corners with the smaller, den-

ser circles on the left). Thus, children detected the circles on the walls and used them for

some purposes. Finally, children’s reorientation was tested in a square room whose walls

differed in geometric form (one pair of opposite walls was covered with circles and the other

with crosses) or in which the circular, patterned walls alternated with walls containing no

pattern. The geometry of surface markings had no effect on children’s reorientation in either

of these conditions, despite children’s clear ability to detect these markings.2

The tendency of children and animals to encode automatically the shape of the surface

layout, but not the shapes of objects or patterns, has puzzled both experimental psycholo-

gists and behavioral biologists. Computational studies of navigation, however, may shed

light on this tendency. In natural environments, objects and small patterns often have identi-

cal or nearly identical twins: One leaf or bush may look much like another. Moreover,

objects often are moveable. Thus, navigating robots that record their position with respect to

objects or small-scale visual patterns are apt to confuse locations containing similar objects

(Milford & Wyeth, 2008) and to fail to recognize locations after one or more objects has

moved (Silveira, Malis, & Rives, 2008). Moreover, most natural scenes contain a rich array

of objects and surfaces markings, whose detail can only be captured by recording a great

deal of information. Because surfaces tend to form a geometrically unique configuration, to

persist over time, and to be smooth, however, the positions of extended surfaces can be

recorded more effectively and economically. For example, the 3D coordinates of just three

points suffice to specify the distance and orientation of a planar surface (see Gee et al.,

2008). Thus, a reorientation system that focuses only on the geometry of extended surfaces

may form representations that are distinctive, robust over object motion, and economical.

The geometric reorientation system has a second limit: It fails to capture the Euclidean

geometrical relationship of angle. Hupbach and Nadel (2005) tested for effects of angle by

disorienting children in a rhombic environment with four equal-length walls arranged to

form two obtuse and two acute angles. When an object was hidden at one corner of the

rhombus, disoriented children searched the four corners equally, despite their markedly dif-

ferent angular relations and aspect ratio. This limit, which has been replicated in a variety of

different environments (S. A. Lee & E. S. Spelke, unpublished data) and persists in children
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up to 4 years of age (Hupbach & Nadel, 2005), reveals that children reorient by distance
and direction but not by angle. It provides the strongest evidence against the thesis that

reorientation is guided by a general representation of Euclidean geometry.3

In summary, studies of navigation provide evidence for a core system of geometric

representation that guides navigation both in animals and in young children. The system is

truly geometric in three respects. First, it captures shape relationships abstractly: Animals

navigate by the shape of a chamber regardless of whether the chamber is visible (Quirk,

Muller, & Kubie, 1990) and over dramatic changes in the chamber’s color, texture, and

material composition (Lever et al., 2002). Second, it preserves information for Euclidean

distance and left–right direction: two fundamental properties of Euclidean geometry. Third,

it supports inferences about the orientation of the self and the locations of objects and signif-

icant places. Nevertheless, the system fails to apply to the simplest and most prototypical

objects of Euclidean geometry: 2D surface markings. Moreover, it fails to capture the

central Euclidean property of angle. Thus, the core navigation system is not the complete

system of ‘‘natural geometry’’ envisaged by Plato, Descartes, or Kant.

4. Core geometry for form perception and object shape description

Although animals and children are strikingly oblivious to surface markings and angular

relationships in the large-scale navigable layout, they are highly sensitive to surface mark-

ings and angular relationships in small pictures and objects. This conclusion, supported by

many decades of experiments on form perception and object recognition in animals and

human infants (see Gibson, 1969; for a classic review of the earlier literature), is reinforced

by recent experiments probing the development of sensitivity to length, angle, and direction

in visual forms (Izard & Spelke, 2009). The experiments, conducted on adults and on chil-

dren ranging from 4 to 10 years of age, revealed a markedly different pattern of perfor-

mance from that found in studies of navigation. At all ages, children and adults detected

angle and length relationships with relative ease, but they failed to detect directional rela-

tionships until adolescence.

The experiment used a deviant detection paradigm (after Dehaene, Izard, Pica, & Spelke,

2006) in which five forms in the shape of an L shared a geometric property that a sixth

L-shaped form lacked. Children were presented with the six forms in a random arrangement

and at random orientations, and their task was to detect the geometrical deviant. On different

trials, the deviant form differed from the other forms in line length, angle, or sense

(Fig. 3A). On pure trials, all the forms were otherwise identical; on interference trials, the

forms varied along a second irrelevant dimension. A comparison of the latter trials to the

pure trials served to assess whether length, angle, or sense was processed automatically and

interfered with the detection of the relevant dimension.

There were two main findings. First, participants of all ages showed highest sensitivity to

angular and length relations and lowest sensitivity to the sense relation that distinguishes a

form from its mirror image (Fig. 3B). Second, variations in angle and length interfered with

one another and with processing of sense, but variations in sense had no effect on processing
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Fig. 3. Sensitivity to geometry in visual forms. (A) Example displays. On different trials, the deviant form was

distinguished by its length, angle, or sense relations; the other forms were either alike in all other geometric rela-

tions (pure trials) or varied on a second geometric relation (interference trials). (B) Performance of each age

group on pure trials. At all ages, performance is better on angle and length deviants than on sense deviants. (C)

Effects of interfering variation in length, angle, or sense on detection of the other two geometric properties. From

left to right, pairs of bars depict the performance on distance and sense trials, angle and sense trials, and distance

and angle trials. Performance was impaired by irrelevant variation in angle or distance but not sense (gray bars),

relative to performance on trials lacking that variation (black bars).
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of angle or length (Fig. 3C). At all ages, therefore, sense is difficult to detect and easy to

ignore.

As a large literature documents, adults’ ability to distinguish a form or 3D object from its

mirror image often requires the application of a mental rotation to align the stimuli (Cooper

& Shepard, 1973). After rotation, two visual forms or objects can be compared directly by a

process of template matching, with no need to represent their abstract sense relations. Men-

tal rotation therefore appears as a strategy that is applied to compensate for the absence of

abstract, orientation-independent representations of sense. In contrast, the deviant detection

study showed that angle and length relations are processed reliably and rapidly in figures

that vary in orientation. Processing of angle and length likely does not elicit the processes of

mental rotation that are required for the discrimination of mirror images.

The asymmetry between the detection of length and angle, on one hand, and sense on the

other, may trace back to infancy. Decades of experiments have investigated sensitivity to

angle and length in human infants, sometimes as early as a few hours after birth (Slater,

Mattock, Brown, & Bremner, 1991). In one set of studies, infants were habituated to two

lines crossing at a constant angle, presented at a number of different orientations. Then they

were tested with new displays, consisting of the same shape in a previously unseen

orientation, or of a shape that differed either by angle or length alone. Infants generalized

habituation to the former displays and looked longer at the latter ones, suggesting that they

are sensitive to variations of angle (Schwartz & Day, 1979; Slater et al., 1991). Similar

experiments showed that infants are also sensitive to variations in length (Newcombe,

Huttenlocher, & Learmonth, 1999). In contrast, studies probing infants’ detection of sense

have yielded mixed findings: Infants failed to distinguish forms from their mirror images in

some experiments (Lourenco & Huttenlocher, 2008), and only subsets of infants succeeded

in other experiments (Moore & Johnson, 2008; Quinn & Liben, 2008). However, sensitivity

to direction was tested with different displays than those used to assess sensitivity to angle

and length, raising the possibility that extraneous stimulus differences, rather than

differences in the geometric properties, produced the differing outcomes. Moreover, none of

the studies reveal whether the infants extracted geometric information in an orientation-

invariant manner or mentally rotated the displays into alignment. Infants’ sensitivity to the

Euclidean properties of visual forms therefore merits further study.

Returning to older children and adults, the findings of studies of 2D form perception

complement the findings of a large body of research on 3D object recognition. Many aspects

of object recognition are subject to controversy, including the fundamental properties

that object representations capture (e.g., surfaces vs. volumes) and the frames of reference

within which those properties are represented (e.g., view-based vs. viewpoint-invariant; see

Biederman & Cooper, 2009; Riesenhuber & Poggio, 2000). It is widely agreed, however,

that objects are best recognized by their shapes, beginning in early childhood (Smith,

Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002) and continuing through adulthood

(Biederman, 1987; Marr, 1982; Warrington & Taylor, 1978). Adults across cultures catego-

rize both 3D object shapes and 2D forms with respect to basic Euclidean properties such as

the presence of straight edges and parallel surfaces (Biederman, Yue, & Davidoff, 2009;

Dehaene et al., 2006). In both behavioral and neuroimaging studies, moreover, shape-based
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object recognition has been found to be invariant both over a wide range of scales and over

reflection (Biederman & Cooper, 2009), providing evidence for sensitivity to differences in

length and angular relationships but not to the directional relationship that distinguishes a

shape from its mirror image. Finally, object shape is processed by dedicated regions in the

lateral occipital and temporal cortex of the brain (Grill-Spector, Golarai, & Gabrieli, 2008;

Reddy & Kanwisher, 2006). These regions respond to the shapes both of 3D objects and of

2D forms, in humans (Kourtzi & Kanwisher, 2001) and in nonhuman primates (Kriegeskorte

et al., 2008; Tanaka, 1996; Yamane, Carlson, Bowman, Wang, & Connor, 2008), further

suggesting that common cognitive mechanisms underlie perception of the shapes of 2D

visual forms and of 3D manipulable objects.

In summary, research provides evidence for a core system for representing the shapes of

movable, manipulable objects. This system shows qualitative continuity over human devel-

opment (Izard & Spelke, 2009) and across cultures (Dehaene et al., 2006). It captures

abstract geometric information, representing object shapes over considerable variations in

orientation, substance, and texture. It highlights two fundamental properties of Euclidean

geometry, length and angle. Yet this system also falls short of full Euclidean geometry in

two respects. First, it fails to apply to the large-scale, navigable layout, as evidenced by chil-

dren’s failure to respond to angle in a rhombic room, and by animals’ and children’s failure

to use the different patterns on walls or corners to reorient themselves. Second, it captures

Euclidean distance and angle but not sense, and therefore fails to distinguish a form from its

mirror image. Core processes of visual form analysis are also evidently not the sole founda-

tion for Euclidean geometry.

5. Two core systems of geometry

Fig. 4a summarizes the contrasting properties of the two proposed systems. Note that

neither system alone applies to entities both small and large, manipulable and navigable.

Moreover, neither system captures all the properties of Euclidean geometry. Finally, neither

system is simply more sensitive nor more widely applicable than the other; instead, they

show qualitatively different specializations and limits. These observations suggest that

separate systems underlie the processing of geometry in large-scale environmental spatial

layouts and in small-scale objects and forms.

Psychologists and neuroscientists have long recognized that dissociable shape-processing

systems support the navigation and visual form analysis. In studies of human adults using

functional brain imaging, the regions that are most activated by the shapes of forms and

objects (e.g., lateral occipital complex; Grill-Spector et al., 2008) are located far from the

regions that process geometric information for navigation (e.g., the hippocampus and

parahippocampal cortex, as well as regions of occipital and parietal cortex; Burgess, Jeffery,

& O’Keefe, 1999; Epstein & Kanwisher, 1998; Landau & Lakusta, 2009). In neurophysio-

logical studies of animals, distinct brain systems have been found to process distinct kinds

of spatial information in order to recognize objects, on one hand, and locate those objects

in the larger environmental layout, on the other (Mishkin, Ungerleider, & Macko, 1983).
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In studies of humans with cortical brain damage, selective impairments to these different

kinds of spatial processing have been observed (Goodale & Milner, 1992). This neural and

cognitive distinction is reflected in human languages, which use precise shape and angle

information to specify the referents of object names, but crude distance and sense informa-

tion to specify the referents of spatial prepositions (Landau & Jackendoff, 1993; Landau &

Lakusta, 2009). Thus, a wealth of research is consistent with the findings from studies of

young children.

If these two core systems are distinct and limited, however, their union would have

considerably more generality and power. Together, the two systems capture all of the funda-

mental properties of Euclidean geometry: distance, angle, and directional relationships.

Together, moreover, they allow for a common description of small-scale objects and of

large-scale spatial layouts. Euclidean geometry may not be immediately available to a child

or animal endowed with these two systems, but it could be constructed by productive combi-

nation of their outputs.

That is precisely the lesson of studies of the construction of natural number (see Carey,

2009; Feigenson, Dehaene, & Spelke, 2004). Natural number is founded on two core sys-

tems of representation, each with true but limited numerical content (Fig. 4b). One system

serves to represent numerically distinct individuals, supports the concept one, and allows for

the operation of adding one to an array, but it includes no explicit, summary representations

of other cardinal values (such as two) and has a capacity limit of about 3 individuals. The

B.

A.

Fig. 4. Schematic depiction of the core systems of geometry (A) and number (B).
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second system serves to represent sets and their approximate cardinal values, supports con-

cepts such as about eight, and allows for operations of comparison and arithmetic on those

concepts, but it has no successor function (one more) and is subject to a ratio limit on preci-

sion that rises from about .33 at birth to about .88 at maturity.

A child with access to the two core number systems could, in principle, construct the sys-

tem of natural number concepts by combining together these concepts and operations. In

practice, this construction takes many years, and it involves mastery of the counting system

used in the child’s culture (Carey, 2009; Wynn, 1990). Although much remains to be

learned about the steps by which children construct natural number from these core systems,

there is evidence that experience in a numerate culture, with devices for symbolizing and

operating on exact numbers, is critical for the development and exercise of natural number

concepts. Children appear to acquire natural number concepts when they master their cul-

ture’s counting procedure (Carey, 2009). Moreover, adults who live in a culture lacking a

verbal-counting procedure typically show only limited abilities to represent large, exact car-

dinal values (Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004; Pica, Lemer, Izard,

& Dehaene, 2004; although see Butterworth, Reeve, Reynolds, & Lloyd, 2008). In numerate

societies, symbolic systems other than language also support numerical reasoning (see Deh-

aene, 1997, for review), and many aspects of this reasoning are impervious to language

impairments (Varley, Klessinger, Romanowski, & Siegal, 2005).

Much less is known about the construction of natural geometry, but we end with a

suggestion: Natural geometry, like natural number, may be constructed by children as they

discover ways to combine productively their geometric representations of large-scale

layouts and small-scale objects. Moreover, these productive combinations may depend

in part on widespread but culturally variable cognitive devices, including pictures, scale

models, and maps.

Pictures and scale models of objects such as animals and human figures appear to be uni-

versal across human cultures, ancient and modern. Moreover, the ability to recognize

objects in pictures is present early in human infancy (e.g., DeLoache, Strauss, & Maynard,

1979; Dirks & Gibson, 1977) and develops even in children with no prior experience

viewing pictures (Hochberg & Brooks, 1962). By 7 months of age, infants also recognize

scale models of artifacts and people (e.g., toy cars and dolls; Mandler & McDonough, 1996;

Rakison, 2003), and by the end of the first year, infants begin to appreciate their symbolic

functions, albeit with occasional errors (DeLoache, Uttal, & Rosengren, 2004). In contrast,

the use of pictures and models to represent large-scale spatial layouts is not evident in the

traces of ancient human cultures. It varies widely both over historical time and across

cultures (Hagen, 1980) and begins to be mastered by children only in the third year of life

(DeLoache, 1987), despite massive exposure to pictured scenes in children’s books. Prior to

2.5 years of age, children can learn the positions of objects in a photograph of a room,

a small-scale model of the room, or in the room itself, but they do not readily transfer

information from a picture or model to the layout that it represents.

Why do children come to understand pictures or models of objects so much earlier than

pictures or models of large-scale spatial layouts? The latter representations provide infor-

mation about places and their relationships in the navigable layout, but they are strikingly
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different from the layouts that they represent. Whereas the environment is stable, with fixed

cardinal directions, these representations are movable. As they are transported, pictures,

models, and maps change their orientation and position with respect to the layout with every

change in the navigator’s position and heading. Moreover, the environment is large and

surrounds the navigator, but pictures, models, and maps typically are orders of magnitude

smaller and present an array located outside the space that the navigator occupies.

In the context of the findings reviewed in this article, navigating through the layout by

means of pictures, models, or maps poses an additional problem. The geometric information

in the map itself falls in the domain of the core system of form perception, which extracts

information about distance and angle that applies to both pictures and 3D manipulable

objects. In contrast, the geometric information in the navigable layout falls in the domain of

the core system of navigation, which extracts information about distance and direction from

3D surface layouts. The evidence for two distinct, core systems of geometry therefore could

help to explain why the practice of making pictures and models of the large-scale spatial

layout is more recent, more culturally variable, and later to develop in children than the

practice of making and interpreting pictures and models of small objects.

Once a human culture develops a technology for making pictures, models, or maps of

spatial layouts, however, and once children in that culture begin to understand these technol-

ogies, children gain tools that could serve to extend their geometrical concepts. The power

of such tools is especially clear in the case of a special kind of visual representation: purely

geometric, 2D maps of the 3D navigable world.

6. Geometric maps

When do children first become able to use line drawings, providing purely geometric

information about the spatial layout, to guide their navigation through that layout? By

4 years of age, remarkably, children have been shown to accomplish this task in two series

of experiments. In one series (Huttenlocher, Newcombe, & Vasilyeva, 1999; see also

Landau & Spelke, 1988), children were presented with a long, thin rectangular space (a

sandbox) and a purely geometric map of the space (a line drawing showing an overhead

view of the sandbox at about 1 ⁄ 8th of the scale), positioned so that the child could view

both arrays at once at the same orientation. On two training trials, children were taught the

correspondence between a horizontal position indicated on the map and the horizontal

location of an object hidden in the sand. With no further instruction or feedback, 4-year-old

children subsequently used the map to guide their search for objects hidden in the sandbox,

showing sensitivity to one-dimensional distance information in the map. Performance

suffered, however, when children in later experiments were required to extract positional

information that varied on two dimensions (Vasilyeva & Huttenlocher, 2004). Children’s

difficulties in the latter experiments may stem in part from the use of an object retrieval

task, which places memory demands on children (see Huttenlocher, Vasilyeva, Newcombe,

& Duffy, 2008). In any case, 4-year-old children reliably extracted distance information

from maps under these presentation and training conditions.
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More recent studies from our laboratory reveal further abilities to use geometric maps at

this age, when maps and arrays are presented separately and at different orientations, in chil-

dren who are given no instruction or feedback. Shusterman, Lee, and Spelke (2008; see also

Vasilyeva & Bowers, 2006) presented children with a large array of three solid objects

arranged in a line or triangle and a 2D map composed of three circles in a similar geometric

arrangement at 1 ⁄ 12th the size of the array (Fig. 5A). After showing the child an array, the

experimenter presented the corresponding map, pointed at a single location on the map, and

asked the child to place an object at that location in the array. Throughout the presentation

of the map, the child stood with his or her back to the array, such that the map and the array

were never visible at the same time. Moreover, the map was presented at a fixed orientation,

either 0� or 180� offset from the array (and therefore at an orientation that preserved, respec-

tively, the allocentric or egocentric spatial relationships between the map and the array);

children were not allowed to rotate or displace the map so as to compare it to the depicted

array directly. Finally, children were given no instruction to attend to the geometric relation-

ships and no feedback on their performance; they were praised regardless of where they

placed the object.

Despite the stringency of this test, 4-year-old children’s performance was systematic and

clearly reflected their use of distance relationships in the map (Fig. 5B). When the objects

A)

B)

Fig. 5. Displays and performance in a test of navigation by purely geometric maps. (A) The experimental room,

child (s), map, and array of three containers. Although allocentric and egocentric map orientations were used in

the experiment and children were tested with multiple target locations, only the allocentric orientation, and a sin-

gle target location, is depicted for each condition. (B) Children’s performance in each type of array. Children

performed reliably above chance on the linear array, providing evidence that they were able to use distance to

distinguish between locations. Furthermore, children performed better on the linear than the triangular arrays,

showing that adding angle to distance information failed to enhance their performance. In the isosceles array,

children chose indiscriminately between the two mirror-image locations, indicating that they did not use sense to

distinguish between locations in this task; their above-chance performance reflects their ability to distinguish the

most distant corner from the other two locations.
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were arranged in a line at unequal intervals, children successfully placed a toy on the correct

object regardless of which object was the target, in accord with their relative distances.

When the objects were arranged in a triangular array with three distinct distance and angular

relationships between locations, children again used their relative distances to locate the

target object and performed most accurately when the target was the most distant object in

the array. However, children performed no better on the triangular than on the linear or the

isosceles array, suggesting that the addition of distinctive angle information did not enhance

their performance. Finally, when the objects were arranged in an isosceles triangular array,

children again used the distance information to place objects successfully at the most distant

target location, but they failed to use directional information to distinguish the two remain-

ing locations.

At 4 years of age, therefore, children spontaneously extracted distance from both the 2D

map and the 3D layout that it represented, and they used the common distance relations in

the two arrays to navigate by the map. Nevertheless, children of this age did not show a

clear ability to use angle or directional information from the map to guide their behavior in

the layout. Research on children’s core systems of geometry may explain both this pattern

of performance and the performance of children in the earlier map studies (Huttenlocher

et al., 1999; Vasilyeva & Bowers, 2006), because distance is the only source of information

that children readily extract from both small visual forms and large navigable layouts. The

abilities manifest in this experiment may represent an early step in children’s construction

of a more general, unified system of Euclidean geometry.

Might full Euclidean geometry be constructed from these beginnings? To address this

question, it is necessary to study the subsequent development of children’s abilities to

extract geometric information from maps. Although there is a wealth of research on the

mapping abilities of children (e.g., Davies & Uttal, 2007) and adults (e.g., Golledge, 2008),

there is little research that focuses on purely geometric maps, and that tests systematically

for sensitivity to distance, angle, and directional information. Nevertheless, a pattern may

be emerging from the few studies that have teased these relationships apart. At about 6 years

of age, children extract angle as well as distance information from maps, even though they

continue to fail to extract directional informational (Dehaene et al., 2006; E. S. Spelke,

C. Gilmore, & S. McCarthy, unpublished data), even though they continue to fail to extract

directional information (Gilmore et al., unpublished data; Dehaene et al., 2006). Adults, in

contrast, extract information about distance, angle, and direction, although they continue to

make more errors with directional information than with information about distance or angle

(Dehaene et al., 2006).

Although much more research is needed, these findings suggest that children and adults

enhance their geometric representations in two ways. First, through their experience with

pictures, scale models, and maps, children may begin to view large-scale layouts not only as

navigable surroundings but also as visual displays with forms that have distinctive angular

shapes. Because children come to understand the symbolic functions of pictures, models,

and maps over the first 4 years of life, children can begin to add angle information to their

representations of large-scale layouts. Second, through their experience with physical and

mental rotation, children and adults may become able to treat small-scale objects and forms
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not only as visual displays with distinctive shapes but as layouts that can be explored from

different perspectives, by means of navigation systems that allow for stable representations

of the distinction between leftward and rightward directions (see Landau & Lakusta, 2009).

By applying two different kinds of geometrical analysis to the same arrays, children may

therefore discover new relations between Euclidean distances, angles, and directions.

By extending each of these kinds of geometrical analysis to new types of arrays, moreover,

children may develop geometrical concepts that are more abstract and general than the

concepts provided by their core systems.

7. Overview

Carey’s program of research sets three tasks for the study of cognitive development. The

first task is to specify the core systems that provide the conceptual primitives on which later

systems of knowledge build, by drawing on comparative research at the time scales of

human evolution, human historical and cultural development, and human ontogeny. The

second task is to describe the conceptual changes that occur over the course of development,

characterizing both the common and the divergent concepts of younger and older children.

The third task is to characterize the processes of conceptual change that cause the emer-

gence of the older child’s system of concepts from the concepts and cognitive resources of

the younger child.

The study of the development of geometrical concepts has begun these tasks. Research

on young human children, nonhuman animals, and human adults in diverse cultures pro-

vides evidence for at least two core systems of geometry that are present and functional

early in human development, that predate the evolution of humans as a species, and that

remain universally present in human adults. Research on older children provides evidence

for the emergence of capacities to relate these systems. At 4 years, children appear to relate

the shapes of objects and of the surface layout only with respect to their common distance
relations. With development, however, children also relate these representations on the basis

of angle, and by adulthood, direction. We have learned little, thus far, about the processes

by which this integration occurs. What leads the child to view the navigable surface layout

as a large-scale form, with the angular relationships that apply to visible objects? And what

leads the child to view small visible forms as an array of paths and places to which one can

navigate in one’s mind? These questions cannot now be answered, but Carey’s theoretical

tools, together with the broad array of empirical methods now probing geometrical abilities,

should allow investigators to ask them.

Notes

1. Two active questions in this field concern the conditions under which disoriented chil-

dren and animals use nongeometric properties of surfaces to guide their navigation,

and the relationship between the navigation processes that respond to geometric and
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to nongeometric information (see Cheng & Newcombe, 2005; Lee, Shusterman, &

Spelke, 2006; Newcombe & Ratliff, 2007; Shusterman & Spelke, 2005). Because the

present article concerns only navigation by layout geometry, we do not consider these

questions here.

2. Readers may wonder why 2-year-old children reoriented in accord with the differences

in wall brightness but not color, and in accord with the relative sizes but not shapes of

visual forms. One possibility, suggested by Huttenlocher and Lourenco (2007), is that

reorientation is effective when children detect an ordering of continuously varying

dimensions of any kind, whether spatial (size) or nonspatial (brightness). A second

possibility is that the relative brightness of walls or size of their texture elements con-

veyed an impression of depth and led children to misperceive the square room as

slightly rectangular. Consistent with the latter possibility, we recently found that chil-

dren reoriented themselves by the shape of a rectangular enclosure even when its walls

differed only slightly in length (in an 8:9 ratio; S. A. Lee, N. Winkler-Rhoades, and

E. Spelke, unpublished data). When the large and small dot patterns of Huttenlocher

and Lourenco (2007) were placed on the walls of such a room, moreover, children

reoriented successfully if the larger dots appeared on the nearer sides, but not if the

smaller dots appeared on the nearer sides, providing evidence that the dot patterns

function as a depth cue.

3. Hupbach and Nadel (2005) reported that children begin to use the shape of the rhom-

bus at about 4 years of age, but this finding does not reveal whether 4-year-old chil-

dren reorient by angle information. Because a complete rhombus differs from a square

both in angle (squares have four equal angles, rhombuses have two pairs of distinct

angles) and in aspect ratio (a rhombic room, like a rectangular room, has major and

minor axes of distinctive relative lengths), 4-year-old children could reorient by either

of these properties. Recent experiments that teased apart these two variables provide

evidence that 2-year-old children use aspect ratio but not angle to reorient (S. A. Lee

& E. S. Spelke, unpublished data). Whatever the status of angle at 4 years of age,

however, Hupbach and Nadel’s experiments show that younger children fail to reori-

ent by detecting the angles at which extended surfaces meet.
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