REDUCED PHOSPHORYLATION OF SYNAPSIN I IN THE HIPPOCAMPUS OF ENGRAILED-2 KNOCKOUT MICE, A MODEL FOR AUTISM SPECTRUM DISORDERS

G. PROVENZANO, a1 L. PANGRAZZI, a1 A. POLLI, a
P. SGADO, a N. BERARDI, b,c AND Y. BOZZI a,b

a Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy
b Institute of Neuroscience, CNR, Pisa, Italy
c NEUROFARBA Department, University of Florence, Italy

Abstract—Mice lacking the homeodomain transcription factor Engrailed-2 (En2−/− mice) are a well-characterized model for autism spectrum disorders (ASD). En2−/− mice present molecular, neuropathological and behavioral deficits related to ASD, including down-regulation of ASD-associated genes, cerebellar hypoplasia, interneuron loss, enhanced seizure susceptibility, decreased sociability and impaired cognition. Specifically, impaired spatial learning in the Morris water maze (MWM) is associated with reduced expression of neurofibromin and increased phosphorylation of extracellular-regulated kinase (ERK) in the hippocampus of En2−/− adult mice. In the attempt to better understand the molecular cascades underlying neurofibromin-dependent cognitive deficits in En2 mutant mice, we investigated the expression and phosphorylation of synapsin I (SynI; a major target of neurofibromin-dependent signaling) in the hippocampus of wild-type (WT) and En2−/− mice before and after MWM. Here we show that SynI mRNA and protein levels are down-regulated in the hippocampus of naive adult mice (as compared to WT controls). This down-regulation is paralleled by reduced levels of SynI phosphorylation at Ser549 and Ser553 residues in the hilus of mutant mice, before and after MWM. These data indicate that in En2−/− hippocampus, neurofibromin-dependent pathways converging on SynI phosphorylation might underlie hippocampal-dependent learning deficits observed in En2−/− mice. © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: autism, mouse, ERK, learning, neurotransmission, synapse.

INTRODUCTION

The homeodomain transcription factor Engrailed-2 (En2) controls regionalization and patterning of the midbrain/hindbrain region (Joyner, 1996; Gherbassi and Simon, 2006). The human EN2 gene has been associated with autism spectrum disorders (ASD) (Gharani et al., 2004; Benayed et al., 2009), and abnormal expression of the EN2 gene has been reported in the cerebellum of ASD patients. Specifically, the EN2 intronic haplotype (rs1861972–rs1861973 A–C) associated with ASD has been shown to increase En2 protein expression in the cerebellum of ASD patients (Choi et al., 2012; James et al., 2013; Choi et al., 2014). In mice, a decreased En2 expression (that is, in opposite direction to the change observed in EN2 haplotype carriers) results in neuropathological and behavioral changes related to ASD. Mice lacking the En2 homeodomain (En2−/−; here referred to as En2−/−) display cerebellar hypoplasia (Joyner et al., 1991; Kuemmerle et al., 1997) and a reduced number of forebrain GABAergic interneurons (Tripathi et al., 2009; Sgadò et al., 2013a; Allegra et al., 2014) accompanied by ASD-like behaviors including enhanced seizure susceptibility (Tripathi et al., 2009), decreased sociability and impaired learning and memory (Cheh et al., 2006; Brielmaier et al., 2012; Provenzano et al., 2014).

Recent studies from our laboratory showed that En2 is also widely expressed in postnatal forebrain, and indicate that it might control the structure and function of learning-related circuits (Tripathi et al., 2009; Sgadò et al., 2013a; Allegra et al., 2014; Provenzano et al., 2014). Indeed, spatial learning and memory deficits are very robust in En2−/− mice (Brielmaier et al., 2012; Provenzano et al., 2014) and might be relevant to cognitive impairment observed in ASD patients (Dawson et al., 2002). We recently showed that impaired spatial learning in the Morris water maze (MWM) is associated with reduced neurofibromin expression in the hippocampus of En2−/− adult mice (Provenzano et al., 2014). Neurofibromin is
En2 learning deficits observed in dependent pathways different from the canonical ERK–(Cui et al., 2008). Loss of neurofibromin function has been associated with learning deficits; mice with a Nf1 heterozygous null mutation show enhanced ERK and synapsin associated with learning deficits: mice with a Nf1 Brambilla, 2011). Loss of neurofibromin function has been characterized by nervous system tumors and cognitive disabilities (Gutmann et al., 2012). Neurofibromin is a Ras-GTPase that negatively regulates extracellular-regulated kinase (ERK) phosphorylation (Fasano and Brambilla, 2011). Our recent studies suggest that neurofibromin-dependent pathways different from the canonical ERK–Synl cascade might underlie hippocampal-dependent learning deficits observed in En2−/− mice (Provenzano et al., 2014). In addition, Synl mRNA expression is down-regulated in En2−/− hippocampus (Sgadò et al., 2013b). Here, we further investigated Synl expression and phosphorylation in the hippocampus of wild-type (WT) and En2−/− mice following spatial learning test in the MWM, in the attempt to better understand the molecular cascades underlying neurofibromin-dependent cognitive deficits in En2 mutant mice.

EXPERIMENTAL PROCEDURES

Animals

Experiments were conducted according to European Community Directive 2010/63/EU and approved by the Italian Ministry of Health. Animals were housed in a 12-h light/dark cycle with food and water available ad libitum. En2 mutants, originally generated on a mixed 129Sv × C57BL/6 genetic background (Joyner et al., 1991), were backcrossed at least five times on a C57BL/6 genetic background (Sgadò et al., 2013a). WT and En2−/− mice were obtained through heterozygous (En2+/− × En2+/−) mating. After weaning, animals were housed in groups, regardless of genotype (4–8 mice of the same sex per cage). Since learning behavior did not differ between genders in both WT and En2−/− mice (Brielmaier et al., 2012), male and female age-matched adult littersmates (3–5 months old; weight = 25–35 g) were used. All animals used in this study came from the same MWM experiment described in Provenzano et al. (2014). Twenty-two mice (11 per genotype) were subjected to MWM and sacrificed at the end of the probe trial; for quantitative reverse-transcription polymerase chain reaction (RT-qPCR), four hippocampi per genotype were dissected and frozen in dry ice; for immunohistochemistry, four brains per genotype were dissected and frozen in dry ice; for immunohistochemistry (four per genotype).

MWM

Experiments were performed as described in Provenzano et al. (2014). Briefly, mice were trained for nine days (two trials a day) to locate and escape onto a submerged platform in a circular tank (80 cm diameter) filled with opaque water (22 ± 1 °C). For each mouse, start position was pseudo-randomized across trials, and the hidden platform remained in the same quadrant for all trials across all training sessions. A spatial probe trial was performed 4 h after the last trial on day 9 of training; time spent, number of crossings and proximity to platform in all quadrants were scored. All animals were killed at the end of the spatial probe trial session and brains dissected. As compared to WT controls, En2−/− mice showed impaired learning during training sessions and lack of quadrant selectivity during probe trial (Provenzano et al., 2014).

Quantitative reverse transcription PCR

Hippocampal total RNAs were extracted and retro-transcribed as described (Provenzano et al., 2014). Quantitative reverse-transcription PCR (RT-qPCR) was performed in a real-time C1000 Thermal Cycler (BioRad Laboratories, Segrate, Italy) using the KAPA SYBR FAST Master Mix reagent (KAPA Biosystems, Wilmington, MA, USA). Primers were as follows: Synl forward 5’-A TGCATACTCCACCCATCTCAAGA-3’, reverse 5’-AGG AGGCCAAGTCTCAGCATAG-3’ (NM_010897.2); mouse mitochondrial ribosomal protein L41 (internal standard) forward 5’-GTTTCTCCCTTCTCCTCTGG-3’, reverse 5’-GCACCCCGACTCTGATGAA-3’ (NM_001031808.2). Ratios of comparative concentrations of Synl mRNA with respect to L41 mRNA were then calculated and plotted as the average of three independent reactions with technical replicates obtained from each RNA pool. Expression analyses were performed using the CFX3 Manager software (BioRad Laboratories, Segrate, Italy).

Immunohistochemistry, densitometry and cell counts

All animals from the four experimental groups were sacrificed on the same day, at the end of MWM session (Provenzano et al., 2014). All brains were fixed by transcardial perfusion with the same batch of 4% paraformaldehyde followed by 1-h post-fixation. Vibratome-cut (40-μm thick) serial coronal sections taken at the level of dorsal hippocampus were incubated the following primary antibodies: goat polyclonal anti-Synl/b (N–19) (Santa-Cruz Biotechnology, Heidelberg, Germany sc-7379; 1:200 dilution), rabbit polyclonal anti-phosphorylated ERK1/2 (Cell Signaling Technologies, Leiden, The Netherlands 4370, 1:500 dilution), rabbit polyclonal anti-neurofibromin (SantaCruz Biotechnology, Heidelberg, Germany sc-67, 1:100 dilution), rabbit polyclonal anti-phosphorylated Synl (anti-p-Synl) (Novus Biologicals, Littleton, CO, USA NB300-744; 1:300 dilution), goat polyclonal anti-p-Synl a/b (Ser553) (SantaCruz Biotechnology, Heidelberg, Germany sc-12913; 1:200 dilution). Following incubation with primary antibodies, appropriate biotin-conjugated secondary antibodies were incubated with streptavidin-conjugated fluorophores (AlexaFluor 488/594, Life Technologies Italia, Monza, Italy) for immunofluorescence or avidin–biotin-peroxidase complex (ABC kit, Vector Laboratories, USA) for diaminobenzidine (DAB) staining. Tissues representing all four experimental
groups were processed for immunocytochemistry at the same time with the same batches of reagents. Quantification of immunohistochemistry experiments was performed as described (Sgadò et al., 2013a; Provenzano et al., 2014). For densitometric analysis of SynI staining, acquired black and white images were inverted. Two separate contours were drawn for each digital image: positive staining was calculated in the entire mossy fiber pathway (from the hilus to the CA3 region), whereas background was calculated over the corpus callosum. Mean optical density values (normalized to contour area) were calculated by subtracting the non-specific background to SynI-specific signal in mossy fibers (mf). To count p-SynI-positive cells, three sections at the level of dorsal hippocampus were analyzed per animal. Multiple bright-field images from each section were acquired at 20× magnification using a Zeiss AxioImager M2 microscope, and then assembled using Adobe Photoshop. Light intensity and microscope settings were optimized initially and then kept constant to maintain the same exposure for collecting images representing all four experimental groups. Cell counts were then performed on tiff-converted mosaic images using ImageJ (http://rsb.info.nih.gov/ij/). Stained cells were counted in the different hippocampal subfields over a minimum of three counting boxes of 100×100 μm each. Cell densities were expressed as the number of labeled cells per counting window (100×100 μm). All counts and measurements were performed by an experimenter blind of genotypes.

Statistical analysis
Statistical analyses were performed by GraphPad software. Two-way ANOVA followed by appropriate multiple comparisons post hoc tests were used, with statistical significance level set at \(p < 0.05 \). Values are reported as mean ± s.e.m.

RESULTS
We recently reported that in En2\(^{-/-}\) mice spatial learning deficits in MWM are accompanied by neurofibromin signaling deficits (Provenzano et al., 2014). Specifically, our study suggests that neurofibromin-dependent pathways different from the canonical ERK–SynI cascade might underlie hippocampal-dependent learning deficits observed in En2\(^{-/-}\) mice. Here we used brain samples from the same animals used in our previous study (Provenzano et al., 2014) to further investigate SynI phosphorylation in the hippocampus of WT and En2\(^{-/-}\) mice before and after MWM. En2\(^{-/-}\) mice showed impaired learning in MWM compared to WT controls (Provenzano et al., 2014).

SynI mRNA expression is down-regulated in the En2\(^{-/-}\) hippocampus
We first investigated SynI mRNA expression in WT and En2\(^{-/-}\) mice before and after the MWM test. To this purpose, we first performed RT-qPCR experiments using the mitochondrial ribosomal L41 protein mRNA as a standard for quantification. As expected, L41 amplification gave comparable amplification curves in all analyzed samples, independent of genotype and treatment (Fig. 1A). In keeping with our previous findings (Sgadò et al., 2013b), RT-qPCR experiments revealed a significant difference in SynI mRNA levels between genotypes but not training groups [two-way ANOVA, main effect of genotype, \(F_{(1,15)} = 32.41, p = 0.0002 \); main effect of training, \(F_{(1,15)} = 9.013, p = 0.01 \)]. Lower levels of SynI mRNA were detected in the hippocampus of En2\(^{-/-}\) naive mice compared to WT (Tukey’s post hoc test, \(p < 0.05 \); \(n = 4 \) per genotype; Fig. 1). SynI mRNA levels remained lower in En2\(^{-/-}\) mice after MWM (Tukey’s post hoc test, \(p < 0.01 \); \(n = 4 \) per genotype; Fig. 1B, C).

SynI protein levels are reduced in the En2\(^{-/-}\) hippocampus
SynI expression in WT and En2\(^{-/-}\) hippocampus was then investigated at the protein level. Immunohistochemistry experiments were performed using an antibody raised against the N-terminal of SynI, recognizing both the non-phosphorylated and phosphorylated forms of the protein (see Experimental Procedures). In agreement with mRNA data, immunohistochemistry experiments revealed a lower SynI staining throughout the whole dorsal hippocampus of En2\(^{-/-}\) naive mice, as compared to WT (Fig. 2A). In both genotypes, SynI immunostaining was localized in fiber compartments (e.g., stratum radiatum (s.r.), mf), whereas CA1/CA3 pyramidal cell layers and granule cell layer (GCL) did not show any
SynI immunostaining in fiber compartments increased after MWM in both genotypes, but remained lower in En2⁻/⁻/C0 mice, as compared to WT (Fig. 2A). Densitometric analysis in mf confirmed a significant effect of both genotype and training [two-way ANOVA, main effect of training, \(F(1,47) = 11.47, p = 0.0018 \); main effect of genotype, \(F(1,45) = 16.61, p = 0.0003 \); Tukey’s post hoc test, \(p < 0.05 \) for WT naïve vs En2⁻/⁻ naïve and WT naïve vs WT MWM; \(p < 0.01 \) for En2⁻/⁻ naïve vs En2⁻/⁻ MWM and WT MWM vs En2⁻/⁻ MWM; \(n = 4 \) per genotype and treatment group] (Fig. 2B).

Down-regulation of SynI phosphorylation (Ser549) in the hilus of En2⁻/⁻/⁻ mice

Our recent study (Provenzano et al., 2014) suggests that neurofibromin-dependent pathways different from the canonical ERK–SynI cascade are implicated in hippocampal-dependent learning deficits observed in En2⁻/⁻/⁻ mice. Indeed, phospho-ERK (p-ERK) staining in naïve WT mice was mainly restricted to mf, where it co-localized with SynI staining (Fig. 3A, B). CA1/CA3 pyramidal cell layers and GCL, which did not show SynI labeling (Figs. 2A and 3A, B), were also devoid of p-ERK staining (Fig. 3A, B).

We then investigated the profile of SynI phosphorylation in the hippocampus of WT and En2⁻/⁻/⁻ mice before and after MWM, using specific antibodies that recognize ERK-dependent (Ser549; Jovanovic et al., 1996) and ERK-independent (Ser553; Matsubara et al., 1996) phosphorylation sites on SynI.

Immunohistochemistry for p-SynI (Ser549 residue) revealed a widespread staining throughout the whole dorsal hippocampus of WT and En2⁻/⁻/⁻ mice before and after MWM (Fig. 4A). In both genotypes and experimental conditions, staining was mainly localized to cell bodies. p-SynI (Ser549)-positive fibers in mf and CA1 s.r. were clearly visible in WT naïve animals,
whereas naïve En2−/− mice showed a very faint fiber staining (Fig. 4A). Interestingly, a lower number of p-SynI (Ser549)-positive cells was detected in the hilus of En2−/− naïve mice compared to WT controls [two-way ANOVA, main effect of genotype $F_{(1,45)} = 13.42$, $p = 0.0008$; Tukey’s post hoc test, $p < 0.05$ for WT naïve vs En2−/− naïve, $p < 0.01$ for WT MWM vs En2−/− MWM; $n = 4$ per genotype and treatment group; Fig. 4B, C]. Similarly, a lower number of p-SynI (Ser549)-positive cells was also detected in the stratum lacunosum moleculare (slm) of En2−/− mice as compared to WT [two-way ANOVA, main effect of genotype $F_{(1,45)} = 9.609$, $p = 0.0037$; Tukey’s post hoc test, $p < 0.01$ for WT naïve vs En2−/− naïve, $p < 0.05$ for WT MWM vs En2−/− MWM; $n = 4$ per genotype and treatment group; data not shown].

Down-regulation of SynI phosphorylation (Ser553) in the hilus of En2−/− mice

We next investigated the profile of SynI phosphorylation on Ser553 residue, which is known to be dependent on cyclin-dependent kinase 5 (Cdk5) (Matsubara et al.,...
Indeed, p-SynI (Ser553) staining co-localized with neurofibromin (Fig. 5) but not p-ERK (Fig. 6) in the hippocampus of naïve WT mice.

Immunohistochemistry for p-SynI (Ser553) showed a widespread staining throughout the whole dorsal hippocampus of WT and En2−/− mice before and after MWM, with a staining localized to cell bodies (Fig. 7A). Quantification of p-SynI (Ser553)-positive cells in GCL revealed no differences across genotypes in both naïve and MWM-trained groups [GCL: two-way ANOVA, main effect of genotype $F_{(1,45)} = 0.543$, $p = 0.46$; $n = 4$ per genotype and treatment group; data not shown]. A significantly lower number of p-SynI (Ser553)-positive...
cells was detected in the hilus of \(En2^{−/−} \) mice compared to WT controls, in both naïve and MWM conditions [two-way ANOVA, main effect of genotype \(F_{(1,45)} = 39.26, p < 0.0001 \); Tukey’s post hoc test, \(p < 0.01 \) for WT naïve vs \(En2^{−/−} \) naïve, \(p < 0.001 \) for WT MWM vs \(En2^{−/−} \) MWM; \(n = 4 \) per genotype and treatment group] (Fig. 7B, C). A lower number of p-Syn (Ser553)-positive cells was also detected in str of \(En2^{−/−} \) mice as compared to WT, in both naïve and MWM animals [two-way ANOVA, main effect of genotype \(F_{(1,45)} = 25.91, p = 0.0001 \); main effect of training \(F_{(1,45)} = 174.9, p = 0.0001 \); Tukey’s post hoc test, \(p < 0.01 \) for WT naïve vs \(En2^{−/−} \) naïve; \(p = 0.002 \) for WT MWM vs \(En2^{−/−} \) MWM; \(n = 4 \) per genotype and treatment group; data not shown].

DISCUSSION

In this study, we showed that SynI mRNA and protein levels are down-regulated in the hippocampus of \(En2^{−/−} \) adult mice. This down-regulation was accompanied by reduced levels of SynI phosphorylation (Ser549/553) in the hilus of both naïve and MWM-treated mutant mice, indicating that multiple pathways converging on SynI phosphorylation might underlie learning deficits in \(En2^{−/−} \) mice.

Synapsins are a family of neuronal phosphoproteins involved in neural development, synaptic transmission and plasticity. Their best-characterized function is to control synaptic vesicle trafficking and modulate neurotransmitter release at the pre-synaptic terminal (Cesca et al., 2010). Mutations in Syn genes have been associated with ASD (Fassio et al., 2011; Corradi et al., 2014); accordingly, Syn knockout mice display ASD-like features, including reduced social interactions and repetitive behaviors (Greco et al., 2013). In addition, both \(Syn^{−/−} \) and \(SynI^{−/−} \) mice display spatial and emotional memory deficits, as evaluated by object recognition and fear-conditioning tests, respectively (Corradi et al., 2008). These deficits are accompanied by neuronal loss and gliosis in the cerebral cortex and hippocampus (Corradi et al., 2008).

We recently showed by microarray and RT-qPCR analyses that SynI mRNA levels are down-regulated in the hippocampus of \(En2^{−/−} \) adult mice (Sgadó et al., 2013b). SynI is one of the several ASD-related genes whose expression is down-regulated in \(En2^{−/−} \) mice, indicating that the molecular signature of the \(En2^{−/−} \) brain shares convergent pathological pathways with ASD (Sgadó et al., 2013b). Here we confirmed and extended these data, showing a 40% and 30% reduction of SynI mRNA and protein levels, respectively, in the \(En2^{−/−} \) hippocampus (Figs. 1 and 2). It is interesting to point out that \(En2^{−/−} \) mice, which present lower levels of hippocampal SynI, display spatial memory (object recognition) deficits (Briemlaier et al., 2012), as observed in SynI knockout mice (Corradi et al., 2008).

In a recent study, we showed that impaired spatial learning performance in the MWM is associated with a 50% reduction of neurofibromin protein in the hippocampus of \(En2^{−/−} \) adult mice (Provenzano et al., 2014). In mice, loss of neurofibromin (a negative regulator of ERK function) results in increased ERK/SynI phosphorylation, enhanced GABA transmission in the hippocampus and impaired spatial learning (Cui et al., 2008). Our recent and present studies suggest that neurofibromin-dependent pathways different from the canonical ERK–SynI cascade might be involved hippocampal-dependent learning deficits detected in \(En2^{−/−} \) mice: the number of hippocampal neurons co-expressing neurofibromin and p-ERK is very low in \(En2^{−/−} \) mice, and an increased number of p-ERK-positive neurons was also detected in subfields of the \(En2^{−/−} \) hippocampus where neurofibromin down-regulation was not detected (Provenzano et al., 2014). In addition, SynI levels are down-regulated (Sgadó et al., 2013b; this study, Fig. 1). Data present in the literature suggest that neurofibromin might also regulate SynI phosphorylation independently of ERK. One kinase possibly involved in this regulation is the cdk5. Cdk5 is known to phosphorylate SynI (see below; Giovedi et al., 2014), and neurofibromin has been shown to interact with cdk5 to regulate the phosphorylation of cellular substrates (such as the collapsin response mediator protein-2, CRMP-2; Lin and Hsueh, 2008; Patrakitkomjorn et al., 2008).

All Syn isoforms share a conserved structure, subdivided in different functional domains (named A–E, from the NH₂ to the COOH terminus). Most of these domains contain consensus sequences for protein kinase-dependent phosphorylation, which constitute the regulatory sites of Syn function (Cesca et al., 2010; Giovedi et al., 2014). Domain A contains phosphorylation sites for protein kinase A, PKA and Ca²⁺/calmodulin-dependent kinases (CaMK), whereas ERK-dependent sites are located in the B domain; phosphorylation at these sites modulates the reversible association of Syn with synaptic vesicles. The C domain is responsible for Syn interaction with actin filaments and synaptic vesicles, and is phosphorylated by the tyrosine kinase Src. Finally, the D domain (which is specific for Synla/b isoforms) contains cdk1/5-dependent phosphorylation sites, as well as additional phosphorylation sites for CaMKII and ERK, and regulates SynI binding to actin and synaptic vesicles (Giovedi et al., 2014).

In this study, we used p-Syn-specific antibodies that recognize ERK-dependent (Ser549; Jovanovic et al., 1996) and cdk5-dependent (Ser553; Matsubara et al., 1996) phosphorylation sites in the D domain. In \(En2^{−/−} \) mice, we found a lower number of p-Syn (Ser 549)-positive cells in the hilus and str, and fewer p-Syn (Ser553)-positive cells in the hilus. Reduced levels of SynI expression and phosphorylation lead to cognitive deficits; SynI mutant mice display impaired hippocampal-dependent learning (Corradi et al., 2008). In addition, lower SynI/p-Syn levels are present in the hippocampus of animals with poor cognitive performance, indicating a positive correlation between hippocampal SynI/p-Syn levels and hippocampal-dependent behaviors (Resende et al., 2012). Conversely, Syn phosphorylation is increased by long-term potentiation (Nayak et al., 1996), and exercise-induced improvement of cognitive performance in MWM
is paralleled by increased hippocampal p-Syn (Molteni et al., 2004; Griesbach et al., 2009). In accordance with these findings, we showed a lower number of SynI- and p-Synl-positive cells in the hippocampus of En2−/− mice, which display robust spatial learning deficits (Brielmaier et al., 2012; Provenzano et al., 2014). We also showed that Syn immunostaining in both WT and En2−/− hippocampus is restricted to fiber compartments (as previously observed by other authors using the same Synl antibody; Nowicka et al., 2003), and this staining is reduced in mf (Fig. 2). p-Synl staining was instead well detectable in pyramidal and granule cell bodies in both genotypes (Figs. 4–7). Upon phosphorylation, Synl has generally been shown to translocate from nerve terminal to the cytosol (Sihra et al., 1989; Chi et al., 2001). However, other authors (using the same p-Synl Ser553 antibody reported in this study) could detect p-Synl staining in the cell bodies of hippocampal pyramidal neurons (Meng et al., 2006). It remains to be explained why intense p-Synl staining was detected in pyramidal cell bodies, where we could not detect any total protein (Fig. 2). A possible explanation is that p-Synl has a conformation that does not allow it to be recognized by the Synl antibody. In addition, we cannot exclude the possibility that the p-Synl antibody recognizes other phosphorylated proteins such as other members of the synapsin family. Phosphorylation at Ser553 residue is known to reduce Synl ability to interact with actin, while leaving its interaction with microtubules unaffected (Matsubara et al., 1996). As proposed by other authors (Meng et al., 2006), p-Synl might then be free to leave the synaptic terminal, translocating to the cell soma. It interesting to note that somatic localization of Synl has been detected in retinal ganglion cells at early postnatal stages, before complete maturation of retinal circuits (Haas et al., 1990). This suggests that somatic localization of Synl might relate to an immature state of neuronal function. However, the role of p-Synl in the soma of hippocampal neurons remains to be elucidated.

Finally, training in the MWM induced a detectable increase of Synl and p-Synl immunoreactivity in the same areas in WT but not En2−/− mice (Figs. 2 and 4), confirming that hippocampal activity during learning results in widespread induction of Synl expression and phosphorylation in hippocampal fiber layers. Increased Synl phosphorylation associated with enhanced cognitive performance has been generally ascribed to activation of ERK signaling. Indeed, increased ERK-dependent phosphorylation of Synl in transgenic mice overexpressing a constitutively active form of H ras resulted in enhanced cognitive performance, which is blocked by deletion of Synl (Kushner et al., 2005). Our results, showing reduced levels of both ERK-dependent and ERK-independent Synl phosphorylation in the En2−/− hippocampus, suggest that multiple signaling pathways converge onto Synl to impair hippocampal-dependent learning; in addition, the co-localization of p-Synl (Ser533) staining with neurofibromin but not p-ERK in pyramidal and granule cell layers (Figs. 5 and 6), suggests that neurofibromin-dependent pathways might lead to Synl phosphorylation independently of ERK activation.

CONCLUSIONS

In this study, we showed that Synl mRNA and protein levels are down-regulated in the hippocampus of En2−/− mice, both before and after a spatial learning test. This down-regulation is paralleled by reduced Synl phosphorylation at Ser459/553 residues in the hilus of mutant mice, indicating that in the En2−/− hippocampus different signaling pathways converge onto Synl to impair hippocampal-dependent learning.

Acknowledgments—We are grateful to the technical/administrative staff of the CIBIO and CNR Neuroscience Institute assistance. This work was funded by the Italian Ministry of University and Research (PRIN 2008 grant # 200894SYW2_002 and PRIN 2010–2011 grant # 2010N8PBAA_002 to Y.B.) and University of Trento (CIBIO start-up grant to Y.B.). P.S. is supported by Provincia Autonoma di Trento (Italy) under the Marie Curie-People cofunding action of the European Community. The authors declare no competing financial interests.

REFERENCES

