Seismic Resilience of a Carbon Black Plant and the Importance of its Industry Specific Components

M. Wenzel, B. Kalemi, O. S. Bursi, C. Caputo, F. Paolacci

Department of Civil, Environment and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.

Moritz.Wenzel@unitn.it
bledar.Kalemi@uniroma3.it
Oreste.Bursi@unitn.it
Antoniocasimiro.Caputo@uniroma3.it
Fabrizio.Paolacci@uniroma3.it
Motivation

Economic Loss

Community

Human Lifes

RESILIENCE

Environment
Carbon Black
Process Flow

STORAGE
SALES

MILLING

WASTE GAS
ENERGY PRODUCTION

REACTION

TANKS
Milling Tower

Equipment:

• Supports at 1st floor surrounding Buildings
• Braced in X direction
• Moment Resisting Frame in Y direction
• 30 ton Top Tank (300m3 100g/l)
• 10 ton Bottom Tank
• Connection with a Bolted Flange Joint
Push Over

Push Over X
• The Tower shows a **good stiffness distribution** over its height.
• A significant Load resistance can be achieved

Push Over Y
• A **weak story** shows failure first.
• Responsible for **system and component failure**
Damage States

- **Damage State 1**: Loss of Containment LOC Bolted Flange Joint. **Drift: 0.2 %**
- **Damage State 2**: Plastic deformation of Bolted Flange Joint. **Drift: 0.5 %**
- **Damage State 3**: Minor Structural Damage and Equipment failure
- **Damage State 4**: Major structural Damage occurs
- **Damage State 5**: Collapse of the Structure
Seismic Hazard

- Priolo Gargallo
- Very high seismizity
- Hazard curve shows the likelihood of observing an EQ with specific IM
Cloud Analysis

• Probability of reaching each Damage State
• 140 Ground Motions

Response Spectrum of Ground Motions
Cloud Analysis

Interstory Drift $Sa_{0.75 \text{ Hz}}$ $R^2 = 0.9$

- DS1: 0.25 %
- DS2: 0.5 %
- DS3: 1.5 %
- DS4: 2.75 %
- DS5: 5.5 %
Assessment

Fragility Sa(0.75Hz)

DS1: 0.25 %
DS2: 0.5 %
DS3: 1.5 %
DS4: 2.75 %
DS5: 5.5 %
\[P_L (DS) = 1 - (1 - P(DS))^{LC} \]

\[P(DS) = \int P(EDP|IM)^2P(IM)dIM \]
Resilience

Reduce:

- Area of Loss
- Risk of Failure
- Capacity Loss
- Repair Time

$$R_{LOSS} = \int_{t_E}^{t_R} [100 - C(t)] dt$$
Conclusion

• Resilience provides additional options to the Stakeholder for Loss mitigation

• In Depth Risk analysis of the components crucial to the Resilience calculation