Welcome to the Perception to Concepts Group!

At the Per2Con Group we study the relation between perception and cognition: on one side, we investigate which aspects of perception act as fundamental building blocks of language-based symbolic cognition; on the other side we study if and how symbolic acquisition in turn shapes perception. We use psychophysics and neuroimaging (fMRI, M-EEG) in adults and children of different cultures and cognitive skills. Our research spans over two main areas: number processing and word processing.

Number processing

Description: We study the fundamental skill that humans share with other animals to quantify the world, and in particular the ability to quantify sets on the basis of their numerosity (the number of objects). We study the neuronal correlate of this perceptual skill, it’s development, and it’s role in grounding higher level cognitive skills, such as formal symbolic arithmetic. We also study the cognitive and neural basis of simple symbolic arithmetic in children and adults with and without developmental dyscalculia.

People: M. Piazza, G. Decarli, P. Chagas

Collaborations: S. Dehaene,E. Eger,  V. Izard, D. Hyde

Selected publications:

“Education enhances the acuity of the pre-verbal approximate number system”.

M.Piazza, V. Izard, E.Spelke, P.Pica, and S. Dehaene. (2013). Psychological Science, 24(6): 1037-1043.

All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. By comparing Mundurucú subjects with and without access to schooling, we found that education significantly enhances the acuity with which sets of concrete objects are estimated. These results indicate that culture and education have an important effect on basic number perception. We hypothesize that symbolic and nonsymbolic numerical thinking mutually enhance one another over the course of mathematics instruction.

Word processing

Description: we are interested in understanding how semantic information (i.e., the meaning of symbols) is stored and accessed during symbol processing. We are currently using imaging and behavioral methods to test the hypothesis that word meaning is an emergent property of the simultaneous re-activation of both perceptual and more abstract features which are represented in separate cortical regions. We are also interested in closely following the cortical and behavioral changes occurring during symbol learning.

People: M. Piazza, V. Borghesani, S. Viganò

Collaborators: M. Buiatti

Selected publications:

“Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding”

V. Borghesani, F. Pedregosa, A. Amadon, E. Eger, M. Buiatti, & M. Piazza. (2016). NeuroImage. 143, 128-140.

The meaning of words referring to concrete items is thought of as a multidimensional representation that includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects, we tested the presence of a mapping between the implied real object size (a perceptual dimension) and the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words, and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along the ventral occipito–temporal cortical path. Combining multivariate pattern classification and representational similarity analysis, we found that the real object size implied by a word appears to be primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in more anterior temporal regions. This anteroposterior gradient of information content indicates that different areas along the ventral stream encode complementary dimensions of the semantic space.


“Contribution of motor representations to action verb processing”.

M. Andres, M. Buiatti, C. Finocchiaro, and M. Piazza (2015). Cognition. 134, 174-184.

Electrophysiological and brain imaging studies show a somatotopic activation of the premotor cortex while subjects process action verbs. This somatotopic motor activation has been taken as an indication that the meaning of action verbs is embedded in motor representations.
However, discrepancies in the literature led to the alternative hypothesis that motor representations are activated during the course of a mental imagery process emerging only after the meaning of the action has been accessed. In order to address this issue, we asked participants to decide whether a visually presented verb was concrete or abstract by pressing a button or a pedal (primary task) and then to provide a distinct vocal response to low and high sounds played soon after the verb display (secondary task). Manipulations of the visual display (lower vs. uppercase), verb imageability (concrete vs. abstract), verb meaning (hand vs. foot-related), and response effector (hand vs. foot) allowed us to trace the perceptual, semantic and response stages of verb processing. We capitalized on the psychological refractory period (PRP), which implies that the initiation of the secondary task should be delayed only by those factors that slow down the central decision process in the primary task. In line with this prediction, our results showed that the time cost resulting from the processing of abstract verbs, when compared to concrete verbs, was still observed in the subsequent response to the sounds, whereas the overall advantage of hand over foot responses did not influence sound judgments. Crucially, we also observed a verb effector compatibility effect (i.e., foot-related verbs are responded faster with the foot and hand-related verbs with the hand) that contaminated the performance of the secondary task, providing clear evidence that motor interference from verb meaning occurred during the central decision stage. These results cannot be explained by a mental imagery process that would deploy only during the execution of the response to verb judgments. They rather indicate that the motor activation induced by action verbs accompanies the lexico-semantic processes leading to response selection.